An Overview of What We Are

[Brief summary of this post]

What are we? Are we bodies or minds or both? Natural science tells us with fair certainty that we are creatures, one type among many, who evolved over the past few billion years in an entirely natural and explainable way. I certainly endorse broad scientific consensus, but this only confirms bodies, not minds. Natural science can’t yet confirm the existence of minds; we can observe the brain, by eye or with instruments, but we can’t observe the mind. Everything we know (or think we know) about the mind comes from one of two sources: our own experience or hearsay. However comfortable we are with our own minds, we can’t prove anything about the experience. Similarly, everything we learn about the world from others is still hearsay, in the sense that it is information that can’t be proven. We can’t prove things about the physical world; we can only develop pretty reliable theories. And knowledge itself, being information and the ability to apply it, only exists in our minds. Some knowledge appears instinctively, and some is acquired through learning (or so it seems to us). Beyond knowledge, we possess senses, feelings, desires, beliefs, thoughts, and perspectives, and we are pretty sure we can recognize these things in others. All of these mental words mean something about our ability to function in the world, and have no physical meaning in and of themselves. And not incidentally, we also have physical words that let us understand and interact with the physical world even though these words are also mental abstractions, being generalizations about kinds or instances of physical phenomena. We can comfortably say (but can’t prove) that we have a very good understanding of a mentally functional existence that is quite independent of our physical existence, an understanding that is itself entirely mentally functional and not physical. It is this mentally functional existence, our mind, that we most strongly identify with. When we are discussing any subject, the “we” doing the discussing is our minds, not our bodies. While we can identify with our bodies and recognize them as an inseparable possession, they, including our brains, are at least logically distinct entities from our minds. We know (from science) that the brain hosts our mind, but that is irrelevant to how we use our minds (excepting issues concerning the care of our heads and bodies) because our thoughts are abstractions not bound (except through indirect reference) to the physical world.

Given that we know we are principally mental beings, i.e. that we exist more from the perspective of function than form, what can we do to develop an understanding of ourselves? All we need to do is approach the question from the perspective of function rather than form. We don’t need to study the brain or the body; we need to study what they do and why. Just as homologous evolution caused eyes to evolve independently about 50-100 times, all our brain functions are evolving because of their value rather than because of their mechanism. Function drives evolution, not form, although form constrains what can be achieved.

But let’s consider the form for a moment before we move on to function. Observations of the brain will eventually reveal how it works in the same way dissection of a computer would. This will illuminate all the interconnections, and even which areas specialize in what kind of tasks. Monitoring neural activation alone could probably even get to the point where one could predict the gist of our thoughts with fair accuracy by correlating areas of neural activity to specific memories and mental states. But that would still be a parlor trick because such a physical reading would not reveal the rationale for the logical relationships in our cognitive models. The physical study of the brain will reveal much about the constraints of the system (the “hardware”), including signal speeds, memory storage mechanisms, and areas of specialized functions, but could it trace our thoughts (the “software”)? To extend the computer analogy, one can study software by doing a memory dump, so a similar memory reading ability for brains could reveal thoughts. But it is not enough to know the software or the thoughts; one needs to know what function is being served, i.e. what the software or thoughts do. A physical examination can’t reveal that; it is a mental phenomenon that can be understood only by reasoning out what it does from a higher-level (generalized) perspective and why. One can figure out what software does from a list of instructions, but one can’t see the larger purposes being served without asking why, which moves us from form to function, from physical to mental. So a better starting point is to ask what function is being served, from which one can eventually back out how the hardware and software do it. Since we are far from being able to decode the hardware or software of the brain (“wetware”) in much detail anyway, I will adopt this more direct functional approach.

From the above, we have finally arrived at the question we need to ask: What function do minds serve? The answer, for which I will provide a detailed defense later on, is that the function of the brain is to provide centralized, coordinated control of the body, and the function of the conscious mind is to provide centralized, coordinated control of the brain. That brains control bodies is, by now, not a very controversial stance. The rest of the body provides feedback to the brain, but the brain ultimately decides. The gut brain does a lot of “thinking” for itself, passing along its hungers and fears, but it doesn’t decide for you. That the conscious mind controls the brain is intuitively obvious but hard to prove given that our only primary information source about the mind is the mind itself, i.e. it is subjective instead of objective. However, if we work from the assumption that the brain controls the body using information management, which is to say the application of algorithms on data, then we can define the mind as what the brain is doing from a functional perspective. That is, the mind is our capacity to do things.

The conscious mind, however, is just a subset of the mind, specifically including everything in our conscious awareness, from sensory input to memories, both at the center of our attention and in a more peripheral state of awareness. We feel this peripheral awareness both because we can tell it is there without dwelling on it and because we often do turn our attention to it, at which point it happily becomes the center. The capacity of our mind to do things is much larger than our conscious awareness, including all things our brains can do for which we don’t consciously sense the underlying algorithm. Statistically, this includes almost everything our brains do. The things we use our minds to do which we can’t explain are said to be done subconsciously, by our subconscious mind. We only know the subconscious mind is there by this process of elimination: we can do it, but we are not aware of how we do it or sometimes that we are doing it at all.

For example, we can move, talk, and remember using our (whole) mind, but we can’t explain how we do them because they are controlled subconsciously, and the conscious mind just pulls the strings. Any explanations I might attempt of the underlying algorithms behind these actions sound like they are at the puppeteer level: I tell my body to move, I use words to talk, I remember things by thinking about them. In short, I have no idea how I really do it. The explanations or understandings available to the conscious mind develop independently of the underlying subconscious algorithms. Our conscious understanding is based only on the information available to conscious awareness. While we are aware of much of the sensory data used by the brain, we have limited access to the subconscious processing performed on that data, and consequently limited access to the information it contains. What ends up happening is that we invent our own view of the world, our own way of understanding it, using only the information we can access through awareness and the subconscious and conscious skills that go with it. What this means is that our whole understanding of the world (including ourselves) is woven out of information we derive from our awareness and not from the physical world itself, which we only know second-hand. Exactly like a sculptor, we build a model of the world, similar to it in as many ways as we can make it feel similar, but at all times just a representation and not the real thing. While we evolved to develop this kind of understanding, it depends heavily on the memories we record over our lifetimes (both consciously accessible and subconsciously not). As the mind develops from infancy, it acquires information from feedback that it can put to use, and it thinks of this information as “knowledge” because it works, i.e. it helps us to predict and consequently to control. To us, it seems that the mind has a hotline to reality. Actually, though, the knowledge is entirely contextual within the mind, not reality itself but only representative of it. But by representing it the contexts or models of the conscious mind arise: the conscious mind has no choice but to believe in itself because that is all it has.

Speaking broadly, subconscious algorithms perform specialized informational tasks like moving a limb, remembering a word, seeing a shape, and constructing a phrase. Consciously, we don’t know how they do it. Conscious algorithms do more generalized tasks, like thinking of ways to find food or making and explaining plans. We know how we do these things because we think them through. Conscious algorithms provide centralized, coordinated control of subconscious (and other conscious) algorithms. Only the top layer of centralized control is done consciously; much can be done subconsciously. For example, all our habitual behavior starts under conscious development and is then delegated to the subconscious going forward. As the control central, though, the buck stops with the conscious mind; it is responsible for reviewing and approving, or, in the case of habitual behavior, preapproving, all decisions. Some recent studies impugn this decisive capacity of the conscious mind with evidence that we make decisions before we are consciously aware that we have done so.1 But that doesn’t undermine the role of consciousness, it just demonstrates that to operate with speed and efficiency we can preapprove behaviors. Ideally, the conscious mind can make each sort of decision just once and self-program to reapply that decision as needed going forward without having to repeat the analysis. It is like a CEO who never pulls triggers himself but has others to do it for him, but continually monitors to see if things are being done right.

I thus conclude that the conscious mind is a subprocess of the mind that exists to make decisions and that it does it using perspectives called knowledge that are only meaningful locally (i.e. in the context of the information under its management) and that these contexts are distilled from information fed to it by subconscious processes. The conscious mind is separate from the subconscious mind for practicality reasons. The algorithmic details of subconscious tasks are not relevant to centralized control. We subconsciously metabolize, pump blood, breathe, blink, balance, hear, see, move, etc. We have conscious awareness of these things only to the degree we need to to make decisions. For example, we can’t control metabolization and heartbeat (at least without biofeedback), and we consequently have no conscious awareness of them. Similarly, we don’t control what we recognize. Once we recognize something, we can’t see it as something else (unless an alternate recognition occurs). But we need to be aware of what we recognize because it affects our decisions. We breathe and blink automatically, but we are also aware we are doing it so we can sometimes consciously override it. So the constant stream of information from the subconscious mind that flows past our conscious awareness is just the set we need for high-level decisions. The conscious mind is unaware how the subconscious does these things because this extraneous information would overly complicate its task, slowing it down and probably compromising its ability to lead. We subjectively know the limits of our conscious reach, and we can also see evidence of all the things our brains must be doing for us subconsciously. I suspect this separation extends to the whole animal kingdom, which is nearly all comprised of bilateral animals having one brain. Octopuses are arguably an exception as they have separate brains for each arm, but the central octopus brain must still have some measure of high-level control over them, perhaps in the form of an awareness, similar to our consciousness. Whether each arm also has some degree of consciousness is an open question.2 Although a separate consciousness process is not the only possible solution to centralized control, it does appear to be the solution evolution has favored, so I will take it as my working assumption going forward.

One can further subdivide the subconscious mind along functional lines into what are called modules, which are specialized functions that also seem to have specialized physical areas of the brain that support them. Steven Pinker puts it this way:

The mind is what the brain does; specifically, the brain processes information, and thinking is a kind of computation. The mind is organized into modules or mental organs, each with a specialized design that makes it an expert in one arena of interaction with the world. 3
The mind is a set of modules, but the modules are not encapsulated boxes or circumscribed swatches on the surface of the brain. The organization of our mental modules comes from our genetic program, but that does not mean that there is a gene for every trait or that learning is less important than we used to think.4

Positing that the mind has modules doesn’t tell us what they are or how they work. Machines are traditionally constructed from parts that serve specific purposes, but design refinements (e.g. for miniaturization) can lead to a streamlining of parts that are fewer in number, but that holistically serve more functions. Having been streamlined by countless generations, the modules of the mind can’t be as easily distinguished along functional boundaries as the other parts of the body because they all perform information management in a highly collaborative way. But if we accept that any divisions we make are preliminary, we can get on with it without getting too caught up in the details. Drawing such lines is reverse engineering. Evolution engineered us, explaining what it did is reverse engineering. Ideally one learns enough from reverse engineering to build a duplicate mechanism from scratch. But living things were “designed” from trillions of small interactions spread over billions of years. We can’t identify those interactions individually, and in any event, natural selection doesn’t select for individual traits but for entire organisms, so even with all the data one would be hard-pressed to be sure what caused what. However, if one generalizes, that is, if one applies statistical reasoning, one can distinguish functional advantages of one trait over another. And considering that all knowledge and understanding are the product of such generalizing, it is a reasonable strategy. Again, it is not the objective of knowledge to describes things “as they are,” only to create models or perspectives that abstract or generalize certain features. So we can and should try to subdivide the mind into modules and guess how they interact, with the understanding that there is more than one way to skin this cat and greater clarity will come with time.

Subdividing the mind into consciousness and a number of subconscious components will do much to elucidate how the mind provides its centralized control function, but the next most critical aspect to consider is how it manages information. Information derives from the analysis of data, the separation of useful data (the wheat) from noisy data (the chaff). Our bodies use at least two physical mechanisms to record information: genes and memory. Genes are nature’s official book of record, and many mental functions have extensive instinctive support encoded by genes. We have fully decoded all our genes and have identified some functions of some of them. Genes either code for proteins or they help or regulate those that do. Their function can be viewed narrowly as a biochemical role or more broadly as the benefit conferred to the organism. We are still a long way off from connecting the genes to the biochemical roles, and further still from connecting to benefits. Even with good explanations for everything questions will always remain because billions of years of subtlety are coded into genes, and models for understanding invariably generalize that subtlety away.

Memory is an organism’s book of record, responsible for preserving any information it gleans from experience, a process also called learning. We don’t yet understand the neurochemical basis of memory, though we have identified some of the chemicals and pathways involved. Nurture (experience) is often steered by nature (instinct) to develop memory. Some of our instinctive skills work automatically without memory but must leverage memory for us to achieve mastery of a learned behavior. We are naturally inclined to learn to walk and talk but are born with no memory of steps or words. So we follow our genetic inclinations, and through practice we record models in memory that help us perform the behaviors reliably.

Genes and memory store information of completely incompatible types and formats. Genetic information encodes chemical structures (either mRNA or proteins) which translate to function mostly through proteins and gene regulation. Memory encodes objects, events and other generalizations which translate to function through indirection, mostly by correlating memory with reality. Genetic information is physical and is mechanically translated to function. Remembered information is mental and is indirectly or abstractly translated to function. While both ultimately get the job done, the mind starts out with no memory as a tabula rasa (blank slate) and assembles and accumulates memory as a byproduct of cogitation. Many algorithmic skills, like vision processing, are genetically prewired, but on-the-job training leverages memory (e.g. recognition of specific objects). In summary, genes carry information that travels across generations while memory carries information transient to the individual.

I mentioned before that culture is another reservoir of information, but it doesn’t use an additional biological mechanism. While culture depends heavily on our genetic nature, significantly on language, we reserve the word culture for additions we make beyond our nature and ourself. Language is an innate skill; a group of children with no language can create a completely vocabulary and grammar themselves in a few years. Therefore, cultural information is not stored in genes but only in memory, and it is also stored in artifacts as a form of external memory. Each of us forms a unique set of memories based on our own experience and our exposure to culture. What an apple is to each of us is a unique derivation of our lifetime exposure to apples, but we all share general ideas (knowledge) about what one can do with apples. We create memories of our experiences using feedback we ourselves collect. Our memory of culture, on the other hand, is partially based on our own experiences and partially on the underlying cultural information others created. Cultural institutions, technologies, customs, and artifacts have ancient roots and continually evolve. Culture extends our technological and psychological reach, providing new ways to control the world and understand our place in it. While cultural artifacts mediate much of the transmission of culture, most culture is acquired from direct interaction with other people via spoken language or other activities. Culture is just a thin veneer sitting on top of our individual memories, but it is the most salient part to us because it encodes so much of what we can share.

To summarize so far, we have conscious and subconscious minds that manage information using memory. The conscious mind is distinct from the subconscious as the point where relevant information is gathered for top-level centralized control. But why are conscious minds aware? Couldn’t our top-level control process be unaware and zombie-like? No, it could not, and the analogy to zombies or robots reveals why. While we can imagine an automaton performing a task effectively without consciousness, as indeed some automated machines do, we also know that they lack the wherewithal to respond to unexpected circumstances. In other words, we expect zombies and robots to have rigid responses and to be slow or ineffective in novel situations. This intuition we have about them results from our belief that simple tasks can be automated, but very general tasks require generalized thinking, which in turn requires consciousness. I’m going to explain why this intuition is sound and not just a bias, and in the process we will see why the consciousness process must be aware of what it is doing.

I have so far described the consciousness process as being a distinct subprocess of the mind which is supplied just the information relevant to high-level decisions from a number of subconscious processes, many of them sensory but also memory, language, spatial processing, etc. Its task is to make high-level decisions as efficiently and efficaciously as possible. I can’t prove that this design is the only possible way of doing things, but it is the way the human mind is set up. And I have spoken in general about how knowledge in the mind is contextual and is not identical to reality but only representative of it. But now I am going to look closer at how that representative knowledge causes a mind to “believe in itself” and consequently become aware. It is because we create virtual worlds (called mental models, or models for short) in our heads that look the same as the outside world. We superimpose these on the physical world and correlate them so closely that we can usually ignore the distinction. But they could not be more different. One of them is out there, and the other in here. One exists only physically, the other only mentally (albeit with the help of a physical computational mechanism, the brain). One is detailed down to atoms and then quarks, while the other is a network of generalizations with limited detail, but extensive association. For this reason, a model can be thought of as a simplified, cartoon-like representation5 of physical reality. Within the model, one can do simple, logical operations on this abridged representation to make high-level decisions. Our minds are very handy with models; we mostly manage them subconsciously and can recognize them much the same way we recognize objects. We automatically fit the world to a constellation of models we manage subconsciously using model recognition.

So the approach consciousness uses to make top level decisions is essentially to run simulations: it builds models that correlate well to physical conditions and then projects the models into the future to simulate what will happen. Consciousness includes models of future possibilities and models of current and past experiences as we observed them. We can’t remember the actual past as it actually was, only how we experienced it through our models. All our knowledge is relative to these models, which in turn relate indirectly to physical reality. But where does awareness fit in? Awareness is just the data managed by this process. We are aware of all the information relevant to top-level decisions because our conscious selves are this consciousness process in the brain. Not all the data within our awareness is treated equally. Since much more information is sensed and recognized than is needed for decisions, the data is funneled down further through an attention process that focuses on just select items in consciousness.6 As I noted before, we can apply our focusing power on anything within our conscious awareness at will to pull it into attention, but our subconscious attention process continually identifies noteworthy stimuli for us to focus on, and it does it by “listening” for signals that stand out from the norm. We know from experience that although we are aware of a lot of peripheral sensory information and peripheral thoughts floating around in our heads at any given point in time, we can only actively think about one thing at a time, in what seems to us as a train of thought where one thought follows another. This linear, plodding approach to top-level decision making ensures that the body will make just one coordinated action at a time because we don’t have to compete with ourselves like a committee every time we do something.

Let’s think again about whether minds could be robotic again. Self-driving cars, for example, are becoming increasingly capable of executing learned behaviors, and even expanding their proficiency dynamically, without any need for awareness, consciousness, reasoning, or meaning. But even a very good learned behavior falls far short of the range of responses that animals need to compete in an evolutionary environment. Animals need a flexible ability to assess and react to situations in a general way, that is, by considering a wide range of past experience. The modeling approach I propose for consciousness can do that. If we programmed a robot to use this approach, it would both internally and externally behave as if it were aware of the data presented to it, which is wholly analogous to what we do. It will have been programmed with a consciousness process that considers access to data “awareness”. Could we conclude that it had actually become aware? I think we could because it meets the logical requirements, although this doesn’t mean robotic awareness would be as rich an experience of awareness as our own. A lot goes into the richness of our experience from billions of years of tweaks that would take us a long time to replicate faithfully in artificial minds. But it is presumptuous of us to think that our awareness, which is entirely a product of data interpretation, is exclusive just because we
are inclined to feel that way.

Let me talk for a moment about that richness of experience. How and why our sensory experiences (called qualia) feel the way they do is what David Chalmers has famously called the hard problem of consciousness. The problem is only hard if you are unwilling to see consciousness as a subroutine in the brain that is programmed to interpret data as feelings. It works exactly the way it does because it is the most effective way that has evolved to get bodies to take all the steps they need to survive. As will be discussed in the next section, qualia are an efficient way to direct data from many external channels simultaneously to the conscious mind. The channels and the attention process focus the relevant data, but the quality or feeling of the qualia results from subconscious influences the qualia exert. Taste and smell simplify chemical analyses down for the conscious mind into a kind of preference. Color and sound can warn us of danger or calm us down. These qualia seem almost supernatural but they actually just neatly package up associations in our minds so we will feel like doing the things that are best for us. Why do we have a first-person experience of them? Here, too, it is nothing special. First-person is just the name we give to this kind of processing. If we look at our, or someone else’s, conscious process more from a third-person perspective we can see that what sets it apart is just the flood of information from subconscious processes giving us a continuous stream of sensations and skills that we take for granted. First person just means being connected so intimately to such a computing device.

Now think about whether robots can be conscious. Self-driving cars use a specialized algorithm that consults millions of hours of driving experience to pick the most appropriate responses. These cars don’t reason out what might happen in different scenarios in a general way. Instead, they use all that experience to look up the right answer, more or less. They still use internal models for pedestrians, other cars, roads, etc, but once they have modeled the basic circumstances they just look up the best behavior rather than reasoning it out generally. As we start to build robots that need more flexibility we may well design the equivalent of a conscious subprocess, i.e. a higher-level process that reasons with models. If we also use the approach of giving it qualia that color its preferences around its sensory inputs in preprogrammed (“subconscious”) ways to simplify the task at the conscious level, then we will have built a consciousness similar to our own. But while we may technically meet my definition of consciousness and while such a robot may even be able to convince people into thinking it is human sometimes (i.e. pass the Turing test), that alone won’t mean it experiences qualia anywhere near as rich as our own, and that is because we have more qualia which encode more preferences in a highly interconnected and seamless way following billions of years of refinements. Brains and bodies are an impressive accomplishment. But they are ultimately just machines, and it is theoretically possible to build them from scratch, though not with the approaches to building we have today.

  1. Neuroscience of free will, Wikipedia
  2. Katherine Harmon, “Even Severed Octopus Arms Have Smart Moves“, Scientific American, August 27, 2013
  3. Steven Pinker, How the Mind Works, W. W. Norton, 1997, p21
  4. Steven Pinker, How the Mind Works, W. W. Norton, 1997, p23
  5. “all their previous life experience is being summed up in their conscious awareness and their contextual memory.”, Conscious Survival in the Wild, Chris King, 2016, “Space, Time and Consciousness”, University of Auckland
  6. Michael Graziano, “A New Theory Explains How Consciousness Evolved“, The Atlantic, 2015

2 thoughts on “An Overview of What We Are”

Leave a Reply