The Certainty Engine

The Certainty Engine: How Consciousness Arose to Drive Decisions Through Rationality

The mind’s organization as we experience it revolves around the notion of certainty. It is a certainty engine. It is designed so as to enable us to act with the full expectation of success. In other words, we don’t just act confidently because we are brash, but because we are certain. It is a surprising capacity, given that we know the future is unknowable. We know we can’t be certain about the future, and yet at the same time we feel certain. That feeling comes from two sources, one logical and one psychological.

Logically, we break the world down into chunks which follow rules of cause and effect. We gather these chunks and rules into mental models (models for short) where certainty is possible because we make the rules. When we think logically, we are using these model models to think about the physical world, because logic, and cause and effect, only exist in the models; they exist mentally but not physically. Cause and effect are just illusions of the way we describe things — very near and dear to our hearts — but not scientific realities. The universe follows its clockwork mechanism according to its design, and any attempt to explain what “caused” what after the fact is going to be a rationalization, which is not necessarily a bad thing, but it does necessarily mean simplifying down to an explanatory model in which cause and effect become meaningful concepts. Consequently, if something is true in a model, then it is a logical certainty in that model. We are aware on some level that our models are simplifications that won’t perfectly match the physical world, but on another level, we are committed to our models because they are the world as we understand it.

Psychologically, it wouldn’t do for us to be too scared to ever act for fear of making a mistake, so once our confidence reaches a given threshold we leap. In some of our models we will succeed while in others we will fail. Most of our actions succeed. This is because most of our decisions are habitual and momentary, like putting one foot in front of the other. Yes, we know we could stub our toe on any step, and we have a model for that, but we rarely think about it. Instead, we delegate such decisions to our subconscious minds, which we trust both to avoid obstacles and to alert us to them as needed, meaning to the degree avoidance is more of a challenge than the subconscious is prepared to handle. For any decision more challenging than habit can handle we try to predict what will happen, especially with regard to what actions we can take to change the outcome. In other words, we invoke models of cause and effect. These models stipulate that certain causes have certain effects, so the model renders certainty. If I go to the mailbox to get the mail and the mailman has come today, I am certain I will find today’s mail. Our plans fail when our models fail us. We didn’t model the situation well enough, either because there were things we didn’t know or conclusions that were insufficiently justified. The real world is too complicated to model perfectly, but all that matters is that we model it well enough to produce predictions that are good enough to meet our goals. Our models simplify to imply logical outcomes that are more likely than chance to come true. This property, which separates information from noise, is why we believe a model, which is to say we are psychologically prepared to trust the certainty we feel about the model enough to act on it and face the consequences.

What I am going to examine how this kind of imagination arose, why it manifests in what we perceive as consciousness, and what it implies for how we should lead our lives.

To the fundamental question, “Why are we here?”, the short answer is that we are here to make decisions. The long answer will fill this book, but to elaborate some, we are physically (and mentally) here because our evolutionary strategy for survival has been successful. That mental strategy, for all but the most primitive of animals, includes being conscious with both awareness and free will, because those capacities help with making decisions, which translates to acting effectively. Decision-making involves capturing and processing information, and information is the patterns hiding in data. Brains use a wide variety of customized algorithms, some innate and some learned, to leverage these patterns to predict the future. To the extent these algorithms do not require consciousness I call them subrational. If all of them were subrational then there would be no need for subjective experience; animals could go about their business much like robots without any of the “inner life” which characterizes consciousness. But one of these talents, reasoning, mandates the existence of a subjective theater, an internal mental perspective which we call consciousness, that “presents” version(s) of the outside world to the mind for consideration as if they were the outside world. All but the simplest of animals need to achieve a measure of the certainty of which I have spoken and to do that they need to model worlds and map them to reality. This capacity is called rationality. It is a subset of the reasoning process, with the balance being our subrational innate talents, which proceed without such modeling (though some support it or leverage it). Rationality mandates consciousness, not as a side effect but because reasoning (which needs rationality) is just another way of describing what consciousness is. That is, our experience of consciousness is reasoning using the faculties we possess that help us do so.

At its heart, rationality is based on propositional logic, a well-developed discipline that consists of propositions and rules that apply to them. Propositions are built from concepts, which are references that can be about, represent, or stand for things, properties and states of affairs. Philosophers call this “aboutness” that concepts possess “intentionality”, and divide mental states into those that are intentional and those are merely conscious, i.e. feelings, sensations and experiences in our awareness1. To avoid confusion and ambiguity, I will henceforth simply call intentional states “concepts” and conscious states “awareness”. Logic alone doesn’t make rationality useful; concepts and conclusions have to connect back to the real world. To accomplish this they are built on an extensive subrational infrastructure, and understanding that is a big part of understanding how the mind works.

So let’s look closer at the attendant features of consciousness and how they contribute to rationality. Steven Pinker distinguishes four “main features of consciousness — sensory awareness, focal attention, emotional coloring, and the will.”2 The first three of these are subrational skills and the last is rational. Let’s focus on subrational skills for now, and we will get to the rational will, being the mind’s control center, further down. The mind also has many more kinds of subrational skills, sometimes called modules. I won’t focus too much on exact boundaries or roles of modules as that is inherently debatable, but I will call out a number of abilities as being modular. Subrational skills are processed subconsciously, so we don’t consciously sense how they work; they appear to work magically to us. We do have considerable conscious awareness and sometimes control over these subrational skills, so I don’t simply call them “subconscious”. I am going to briefly discuss our primary subrational skills.

First, though, let me more formally introduce the idea of the mind as a computational engine. The idea that computation underlies thinking goes back at least 500 years to Thomas Hobbes who said “by reasoning, I understand computation. And to compute is to collect the sum of many things added together at the same time, or to know the remainder when one thing has been taken from another. To reason therefore is the same as to add or to subtract.” Alan Turing and Claude Shannon developed theories of computability and information from the 1930’s to the 1950’s that led to Hilary Putnam formalizing the Computational Theory of Mind (CTM) in 1961. As Wikipedia puts it, “The computational theory of mind holds that the mind is a computation that arises from the brain acting as a computing machine, [e.g.] the brain is a computer and the mind is the result of the program that the brain runs”. This is not to suggest it is done digitally as our computers do it; brains use a highly customized blend of hardware (neurochemistry) and software (information encoded with neurochemistry). At this point we don’t know how it works except for some generalities at the top and some details at the bottom. Putnam himself abandoned CTM in the 1980’s, though in 2012 he resubscribed to a qualified version. I consider myself an advocate of CTM, provided it is interpreted from a functional standpoint. It does not matter how the underlying mechanism works, what matters is that it can manipulate information, which as I have noted does not consist of physical objects but of patterns that help predict the future. So nothing I am going to say in this book is dependent on how the brain works, though it will not be inconsistent with it either. While we have undoubtedly learned some fascinating things about the brain in recent years, none of it is proven and in any case it is still much too small a fraction of the whole to support many conclusions. So I will speak of the information management done in the brain as being computational, but that doesn’t imply numerical computations, it only implies some mechanism that can manage information. I believe that because information is abstract, the full range of computation done in human minds could be done on digital computers. At the same time, different computing engines are better suited to different tasks because the time it takes to compute can be considerable, so to perform well an engine must be finely tuned to its task. For some tasks, like math, digital computers are much better suited than human brains. For others, like assessing sensory input and making decisions that match that input against experience, they are worse (for now). Although we are a long way from being able to tune a computer as well to its task as our minds are to our task of survival, computers don’t have to match us in all ways to be useful. Our bodies are efficient, mobile, self-sustaining and self-correcting units. Computers don’t need to be any of those things to be useful, though it helps and we are making improvements in these areas all the time.

So knowing that something is computed and knowing how it is done are very different things. We still only have vague ideas about the mechanisms, but we can still deduce much about how it works just by knowing it is computational. We know the brain doesn’t use digital computing, but there are many approaches to information processing and the brain leverages a number of them. Most of the deductions I will promote here center around the distinction between computations done consciously (and especially under conscious attention) and those done subconsciously. We know the brain performs much information processing of which we have no conscious awareness, including vision, associative memory lookup, language processing, and metabolic regulation, to name a few kinds. We know the subconscious uses massively parallel computing, as this is the only way such tasks could be completed quickly and thoroughly enough. Further, we know that the conscious mind largely feels like a single train of thought, though it can jump around a lot and can sense different kinds of things at the same time without difficulty.

Looking at sensory awareness, we internally process sensory information into qualia (singular quale, pronounced kwol-ee), which is how each sense feels to us subjectively. This processing is a computation and the quale is a piece of data, nothing more, but we are wired to attach a special significance to it subjectively. We can think of the qualia as being data channels into our consciousness. Consciousness itself is a computational process that interprets the data from each these channels in a different way, which we think of as a different kind of feeling, but which is really just data from a different channel. Beyond this raw feel we recognize shapes, smells, sounds, etc. via the subrational skills of recollection and recognition, which bring experiences and ideas we have filed away back to us based on their connections to other ideas or their characteristics. This information is fed through a memory data channel. Interestingly, the memory of qualia has some of the feel of first-hand qualia, but is not as “vivid” or “convincing”, though sometimes in dreams it can seem to be. This is consistent with the idea that our memory can hold some but not all of the information the data channels carried.

Two core subrational skills let us create and use concepts: generalizing and modeling. Generalization is the ability to recognize patterns and to group things, properties, and ideas into categories called concepts. I consider it the most important mental skill. Generalizations are abstractions, not of the physical world but about it. A concept is an internal reference to a generalization in our minds that lets us think about the generalization as a unit or “thing”. Rational thought in particular only works with concepts as building blocks, not with sensations or other kinds of preconceptual ideas. Modeling itself is a subrational skill that builds conceptual frameworks that are heavily supported by preconceptual data. We can take considerable conscious control of the modeling process, but still the “heavy lifting” is both subrational and subconscious, just something we have a knack for. It is not surprising; our minds make the work of being conscious seem very easy to us so that we can focus with relative ease on making top-level decisions.

There are countless ways we could break down our many other subrational skills, with logical independence from each other and location in the brain being good ones. Harvard psychologist Howard Gardner identified eight types of independent “intelligences” in his 1983 book Frames of Mind: The Theory of Multiple Intelligences3: musical, visual-spatial, verbal-linguistic, logical-mathematical, bodily, interpersonal, intrapersonal and naturalistic. MIT neuroscientist Nancy Kanwisher in 2014 identified specific brain regions that specialize in shapes, motion, tones, speech, places, our bodies, face recognition, language, theory of mind (thinking about what other people are thinking), and “difficult mental tasks”.4 As with qualia and memory, most of these skills interact with consciousness via their own kind of data channel.

Focus itself is a special subrational skill, the ability to weigh matters pressing on the mind for attention and then to give focus to those that it judges most important. Rather than providing an external data channel into consciousness, focus controls the data channel between conscious awareness and conscious attention. Focusing itself is subrational and so its inner workings are subconscious, but it appears to select the thoughts it sends to our attention by filtering out repetitive signals and calling attention to novel ones. We can only apply reasoning to thoughts under attention, though we can draw on our peripheral awareness of things out of focus to bring them into focus. While focus works automatically to bring interesting items to our attention, we have considerable conscious control to keep our attention on anything already there.

Drives are another special kind of subrational skill that can feed consciousness through data channels with qualia of their own. A drive is logically distinct from the other subrational skills in that it creates a psychological need, a “negative state of tension”, that must be satisfied to alleviate the tension. Drives are a way of reducing psychological or physiological needs to abstractions that can be used to influence reasoning, to motivate us:

A motive is classified as an “intervening variable” because it is said to reside within a person and “intervene” between a stimulus and a response. As such, an intervening variable cannot be directly observed, and therefore, must be indirectly observed by studying behavior.5

Just rationally thinking about the world using models or perspectives doesn’t by itself give us a preference for one behavior over another. Drives solve that problem. While some decisions, such as whether our heart should beat, are completely subconscious and don’t need motivation or drive, others are subconscious yet can be temporarily overridden consciously, like blinking and breathing. These can be called instinctive drives because we start to receive painful feedback if we stop blinking or breathing. Others, like hunger, require a conscious solution, but the solution is still clear: one has to eat. Emotions have no single response that can resolve them, but instead provide nuanced feedback that helps direct us to desirable objectives. Our emotional response is very context-sensitive in that it depends substantially on how we have rationally interpreted, modeled and weighed our circumstances. But emotional response itself is not rational; an emotional response is beyond our conscious control. Since it depends on our rational evaluation of our circumstances, we can ameliorate it by reevaluating, but our emotions have access to our closely-held (“believed”) models and can’t be fooled by those we consider only hypothetically.

We have more than just one drive (to survive) because our rational interactions with the world break down into many kinds of actions, including bodily functions, making a living, having a family, and social interactions.6 Emotions provide a way of encoding beneficial advice that can be applied by a subjective, i.e. conscious, mind that uses models to represent the world. In this way, drives can exert influence without simply forcing a prescribed instinctive response. And it is not just “advice”; emotions also insulate us from being “reasonable” in situations where rationality would hurt more than help. Our faces betray our emotions so others can trust us.7 Romantic love is a very useful subrational mechanism for binding us to one other person as an evolutionary strategy. It can become frustratingly out of sync with rational objectives, but it has to have a strong, irrational, even mad, pull on us if it is to work.8

Although our conscious awareness and attention exist to support rationality, this doesn’t mean people are rational beings. We are partly rational beings who are driven by emotions and other drives. Rather than simply prescribing the appropriate reaction, drives provide pros and cons, which allow us to balance our often conflicting drives against each other by reasoning out consequences of various solutions. For any system of conflicting interests to persist in a stable way, one has to develop rules of fair play or each interest will simply fight to the death, bringing the system down. Fair play, also known as ethics, translates to respect: interests should respect each other to avoid annihilation. This applies to our own competing drives and interpersonal relationships. The question is, how much respect should one show, on a scale of me first to me last? Selfishness and cooperation have to be balanced in each system accordingly. The ethical choice is presumably one that produces a system that can survive for a long time. And living systems all embrace differing degrees of selfishness and cooperation, proving this point. Since natural living systems have been around a long time, they can’t be unethical by this definition, so any selfishness they contain is justified by this fact. Human societies, on the other hand, may overbalance either selfishness or cooperation, leading to societies that fail, either by actually collapsing or by under-competing with other societies, which eventually leads to their replacement.

And so it is that our conscious awareness becomes populated with senses, memories, emotions, language, etc, which are then focused by our power of attention for the consideration of our power of reasoning. Of this Steven Pinker says:

The fourth feature of consciousness is the funneling of control to an executive process: something we experience as the self, the will, the “I.” The self has been under assault lately. The mind is a society of agents, according to the artificial intelligence pioneer Marvin Minsky. It’s a large collection of partly finished drafts, says Daniel Dennett, who adds, “It’s a mistake to look for the President of the Oval Office of the brain.”
The society of mind is a wonderful metaphor, and I will use it with gusto when explaining the emotions. But the theory can be taken too far if it outlaws any system in the brain charged with giving the reins or the floor to one of the agents at a time. The agents of the brain might very well be organized hierarchically into nested subroutines with a set of master decision rules, a computational demon or agent or good-kind-of-homunculus, sitting at the top of a chain of command. It would not be a ghost in the machine, just another set of if-then rules or a neural network that shunts control to the loudest, fastest or strongest agent one level down.9
The reason is as clear as the old Yiddish expression, “You can’t dance at two weddings with only one tuches.” No matter how many agents we have in our minds, we each have exactly one body. 10

While it may only be Pinker’s fourth feature, it is the whole reason for consciousness. We have a measure of conscious awareness and control over our subrational skills only so that they can help with reasoning and thereby allow us to make decisions. This culmination into a single executive control process is a logical necessity given one body, but that it should be conscious or rational is not so much necessary as useful. Rationality is a far more effective way to navigate an uncertain world than habit or instinct. Perhaps we don’t need to create a model to put one foot in front of the other or chew a bite of food. But paths are uneven and food quality varies. By modeling everything in many degrees of detail and scope, we can reason out solutions better than more limited heuristical approaches of subrational skills. Reasoning brings power, but it can only work if the mind can manage multiple models and map them to and from the world, and that is a short description of what consciousness is. Consciousness is the awareness of our senses, the creation (modeling) of worlds based on them, and the combined application of rational and subrational skills to make decisions. Our decisions all have some degree of rational oversight, though we can, and do, grant our subrational skills (including learned behaviors) considerable free reign so we can focus our rational energies on more novel aspects of our circumstances.

Putting the shoe on the other foot, could reasoning exist robotically without the inner life which characterizes consciousness? No, because what we think of as consciousness is mostly about running simulations on models we have created to derive implications and reactions, and measuring our success with sensory feedback. It would feel correct to us to label a robot doing those things as conscious, and it would be able to pass any test of consciousness we cared to devise. It, like us, would metaphorically have only one foot in reality while its larger sense of “self” would be conjecturing and tracking how those conjectures played out. For the conscious being, life is a game played in the head that somewhat incidentally requires good performance in the physical world. Of course, evolved minds must deliver excellent performance as only the fittest survive. A robot consciousness, on the other hand, could be given different drives to fit a different role.

To summarize, one can draw a line between conscious beings and those lacking consciousness by dividing thoughts into a conceptual layer and the support layers beneath it. In the conceptual layer, information has been generalized into packets called concepts which are organized into models which gather together the logical relationships between concepts. The conceptual layer itself is an abstraction, but it connects back to the real world whenever we correlate our models with physical phenomena. This ability to correlate is another major subrational skill, though it can be considered a subset of our modeling ability. Beneath the conceptual layer are preconceptual layers or modules, which consists of both information and algorithms that capture patterns in ways that have proven useful. While the rational mind only sees the conceptual layer, some subrational modules use both preconceptual and conceptual data. Emotions are the most interesting example of a subrational skill that uses conceptual data: to arrive at an emotional reaction we have to reason out whether we should feel good or bad, and once we have done that, we experience the feeling so long as we believe the reasoning (though feelings will fade if their relevance does). Only if our underlying reasoning shifts will our feelings change. This will happen quickly if we discover a mistake, or slowly as our reasoned perspective evolves over time.

One can picture the mind then as a tree, where the part above the ground is the conceptual layer and the roots are the preconceptual layers. Leaves are akin to concepts and branches to models. Leaves and branches are connected to the roots and draw support from them. The above-ground, visible world is entirely rational, but reasoning without connecting back to the roots would be all form and no function. So, like a tree “feeling” its roots, our conscious awareness extends underground, anchoring our modeled creations back to the real world.

  1. Consciousness and Intentionality, Stanford Encyclopedia of Philosophy
  2. Steven Pinker, 2007, How the Mind Works, p136
  3. Gardner, Howard (1983), Frames of Mind: The Theory of Multiple Intelligences, Basic Books, ISBN 0133306143
  4. Nancy Kanwisher: A neural portrait of the human mind, TED2014
  5. Motives and Drives in Psychology, Erupting Mind
  6. ANIMAL BEHAVIOR AND INTERNAL DRIVES, Curt P. Richter, Psychobiological Laboratory, Phipps Psychiatric Clinic, Johns Hopkins University, THE QUARTERLY REVIEW of BIOLOGY, Vol. II, No. 3, September, 1927
  7. Steven Pinker, 2007, How the Mind Works, p405 “When we see someone going through the motions of generosity, guilt, sympathy, or gratitude rather than showing signs of the genuine emotion, we lose the desire to cooperate.”
  8. Steven Pinker, 2007, How the Mind Works, p417 “don’t accept a partner who wanted you for rational reasons to begin with; look for a partner who is committed to staying with you because you are you. Committed by what? Committed by an emotion. An emotion that the person did not decide to have, and so cannot decide not to have…an emotion like romantic love.”
  9. Steven Pinker, 2007, How the Mind Works, p143-144
  10. Steven Pinker, 2007, How the Mind Works, p144

1 thought on “The Certainty Engine”

Leave a Reply