Approaching the Mind Scientifically

“You unlock this door with the key of imagination. Beyond it is another dimension: a dimension of sound, a dimension of sight, a dimension of mind. You’re moving into a land of both shadow and substance, of things and ideas. You’ve just crossed over into… the Twilight Zone.” — Rod Serling

Many others before me have attempted to explain the functional basis of the mind. They’ve gotten a lot of the details right, but taken as a whole, no theory presented to date adequately explains the mind as we experience it. Our deeply held intuitions about the special character of the mind are quite true, but science has found no purchase to get at them. My premise is that nearly everything we think we know about the mind is true and that science needs to catch up with common sense. The conventional approach of science is to write off all our intuitions as fantasy, the biased illusions of wishful thinking that evolved to lead us down adaptive garden paths rather than to understand the mind. But this is misguided; minds are not designed to be deluded, they are designed to collect useful knowledge, and we each already have encyclopedic knowledge about how our mind works. This is not to say minds are immune to delusion or bias, which can happen for many practical reasons. But with a considered approach we can get past such gullibility.

Our most considered approach to figuring things out is science. The cornerstone quality of science is objectivity. What objective exactly means is a topic I will discuss in greater detail later, but from a high level it means a perspective that is independent of each of our subjective perspectives. Knowledge that can be shown to be outside of us is the same for everyone and can count as scientific truth. For this reason, I am developing a scientific perspective here, not a spiritual or fantastic one. But is it even possible to develop an objective way of studying the mind, which seems to be an entirely subjective phenomenon? We only know about minds because we have them and can think about what they are up to. We can’t see what they are doing using instruments. Or, rather, we can see through brain scans that areas of the brain are active when our minds are active, and we can even approximately tell what areas of the brain are related to what aspects of the mind by correlating what people report is happening in their mind to what is happening in their brain. But science seems to be inadequately equipped to make sense of mental states in a way that makes sense to us. I’m going to dig into the philosophy of science to sort this out. We will have to consider more closely the nature of the object under study and what we are expecting science to accomplish. And we will find that deriving an appropriate philosophy of science is closely related to understanding the mind because both search for the nature of knowledge and truth. As we move into this twilight zone, we should remain cognizant of Richard Feynman’s injunction against cargo cult science, which he said could only be avoided by “scientific integrity, which he described as, “a kind of leaning over backwards” to make sure scientists do not fool themselves or others.” What I am proposing here is especially at risk of this because I am playing with the very structure of science and its implications at the highest levels. I’ve tried to review everything I have written to ferret out any overreach, but reach in this area still has many subjective qualities. Still, I believe that a coherent, unified theory is now possible and I hope my approach helps pave the way.

Science has been fighting some pitched philosophical debates in recent decades which have reached a standstill and left it on pretty shaky ground. These skirmishes don’t affect most scientific fields because they can make local progress without a perfect overall view, but the science of mind can go nowhere without a firm foundation. So I’m going to establish that first and then start to draw out the logical implications, decomposing the mind from the top down in a general way. I am going to have to make some guesses. A scientific hypothesis is a guess which gets promoted to a theory once it has the backing of rigorous experimentation and evidence. I’m not doing field research here, and my investigation will encompass many fields, so I will mostly look to well-established theories to support my hypothesis. Where theory has not been adequately established, I will have to hypothesize, but I will also cite some credible published hypotheses. I will adjust and consolidate these theories and hypotheses to form a unified hypothesis. Because I am using an iterative approach to present my ideas in increasingly more detail, I have to ask you to bear with me. Each iteration can only go so deep, but I will try to get to all the issues and provide sufficient support. If you accept the underlying theories, then you should find my conclusions to be well-supported and relatively non-controversial. That said, the fields of science involved are works in progress, so recent thinking is inherently unsettled and controversial. But my goal is to stay within the bounds of the conclusions of science and common sense, even though I will be reframing our conception of the scope of both.

First, the major theories from which I plan to draw support:

  1. Physicalism, the idea that only physical entities comprised of matter and energy exist. The predominant paradigm sees these entities’ behavior governed by four fundamental forces, which include gravity, the electromagnetic force, and the strong and weak nuclear forces. The latter three are nicely wrapped up into the Standard Model of particle physics, and gravity by general relativity. Although a grand unified theory remains elusive, physicalists recognize that even if no exception to such a theory could be found, it would not prove it was correct and would not reveal why the universe behaves as it does.

  2. Evolution, the idea that inanimate matter become animate over time through a succession of heritable changes. The paradigm Darwin introduced in 1859 itself evolved during the first half of the 20th century into the Modern Synthesis to incorporated genetic traits and rules of recombination and population genetics. Watson and Crick’s discovery of DNA in 1953 as the source of the genetic code provided the molecular basis for this theory. Since that time, however, our knowledge of molecular mechanisms has exploded, undermining much of that paradigm. “In 2009, the evolutionary biologist Eugene Koonin stated that while “the edifice of the [early 20th century] Modern Synthesis has crumbled, apparently, beyond repair”, a new 21st-century synthesis could be glimpsed.”1 Most notably, we see a bigger picture in which the biochemistry and evolutionary mechanisms shared by all existing organisms took perhaps 0.5 to 1 billion years to evolve, and probably another billion years of refinements before before the eukaryotes (organisms whose cells have a nucleus) appeared about 2 billion years ago. Although we now know that genes encoded by DNA produce all the proteins that in turn manage cellular metabolism, we have been quite surprised to discover in recent decades that this only explains about 2% of our DNA. Most of the remaining DNA regulates when proteins are deployed and acts as building blocks for new genes. In the early days of evolution, forms that could build genes that were more likely to be useful outcompeted forms without this kind of adaptive foresight. So genetic change is not only not at the whim of random mutations, it is a carefully orchestrated cellular function, and it responds to pressures of natural selection in ways we can only guess at for now.23

  3. Computational Theory of Mind, the idea that the human mind is an information processing system and that both cognition and consciousness result from this computation. According to this theory, computation is generalized to be a transformation of inputs and internal states using rules to produce outputs. Where mechanical computers use symbolic states stored in digital memory and manipulated electronically, neural computers use neurochemical inputs, states, outputs, and rules. This theory, more than any other, has guided my thinking in this book. It is considered by many, including me, to be the only scientific theory that appears capable of providing a natural explanation for the much if not all of the mind’s capabilities. However, I largely reject the ideas of the representational theory of mind and especially the language of thought, as they unnecessarily and incorrectly go too far in proposing a rigid algorithmic approach when a more generalized solution is needed. Note that whenever I use the word “process” in this book, I mean a computational information process, unless I preface it with a differentiating adjective, e.g. biological process.

While the scientific community would broadly agree that these are the leading paradigms in their respective areas, they would not agree on any one version of each theory. They are still evolving and in cases have parallel, contradictory lines of development. I will cite appropriate sources that are representative of these theories as needed.

  1. Koonin’s ‘post-modern’ evolutionary synthesis, 2009, Modern synthesis (20th century), Evolution, Wikipedia
  2. Note that these more recent ideas about guided evolution, which I will discuss more later, have not been demonstrated and so are still mostly hypothetical, but no other hypothesis explains what we see.
  3. Interaction-based evolution: how natural selection and nonrandom mutation work together and Transformation of a transposon into a derived prolactin promoter with function during human pregnancy.

Leave a Reply